Понедельник, 07.10.2024, 13:20
Приветствую Вас Гость | RSS
Главная | Регистрация | Вход
Меню сайта
Разделы новостей
Кибернетизация отдельных отраслей [5]
Искусственный интеллект [4]
Юмор [6]
Мини-чат
Наш опрос
Какие разделы нужны?
Всего ответов: 4
Форма входа
Календарь новостей
«  Июль 2007  »
ПнВтСрЧтПтСбВс
      1
2345678
9101112131415
16171819202122
23242526272829
3031
Поиск
Друзья сайта
Статистика

Онлайн всего: 1
Пришельцы: 1
Земляни: 0
CyberSS
Главная » 2007 » Июль » 5 » Автоматическое управление и регулирование
Автоматическое управление и регулирование
17:45
С первых шагов цивилизации человек пытался механизировать труд. Он очень быстро нашел пути замены мускульной энергии механической; высшей точкой этого начального периода технического прогресса была промышленная революция 18 в. Новая эпоха началась, когда человек научился производить и распределять энергию. К 20 в. в передовых странах механическая энергия, получаемая от пара, текущей воды и электричества, в основном заменила энергию человека и животных. Когда стали доступны большие количества энергии, интерес общества сместился на управление такой энергией.

Следующий важный этап в развитии техники, называемый иногда второй промышленной революцией, начался в 1930-х годах. Эта революция была связана не с изобретением принципиально новых механических устройств, а скорее с реализацией некоторой идеи, а именно идеи саморегулирования, которая является фундаментальной характеристикой неисчислимых естественных процессов. Хотя существование саморегулирующихся процессов в природе было замечено людьми давно, только в 20 в. были сформулированы и систематически разработаны принципы автоматического регулирования. Применение этих принципов открыло новую эру в технике и промышленности.





Арабские водяные часы (1 в. н. э.)



Понятие обратной связи. Важной особенностью большинства управляемых процессов является обратная связь. Понятие обратной связи можно легко проиллюстрировать с помощью простого примера моряка, управляющего кораблем с помощью рулевого колеса (рис. 2). Штурвальный выдерживает курс судна в соответствии с заданными командами. Этот метод управления, обозначаемый термином «управление с разомкнутым контуром», страдает несколькими серьезными недостатками. Так, при изменении характеристик привода – исполнительного механизма, изменяющего положение руля, – судно будет сбиваться с курса, если рулевой не имеет никакой информации о действительном направлении движения.





Система с разомкнутым контуром



Если бы рулевой постоянно следил за курсом судна по компасу, сравнивал его с заданным и вращал штурвал так, чтобы уменьшить выявленную ошибку, судно приблизительно выдерживало бы нужный курс. Можно заметить, что в этом случае штурвальный выполняет три основные функции – обнаруживает отклонение действительного исполнения от заданного, принимает решение о коррекции действия и реализует его с помощью штурвала. Эти действия по обнаружению и коррекции ошибки, а также по управлению показаны на рис. 3 как обратная связь от управляемой величины к управляющей. В такой системе фигурирует не только направление движения корабля, задаваемое положением штурвала, но и само положение штурвала зависит от этого направления. Взаимозависимость двух величин – положения штурвала и курса судна – определяет концепцию, называемую в инженерной среде обратной связью, а термин «автоматические системы управления» обычно относится к автоматическим системам, построенным на этой концепции; часто такие системы называются также «системами управления с обратной связью» или «системами с замкнутым контуром».





В СИСТЕМЕ С ЗАМКНУТЫМ КОНТУРОМ (с обратной связью) штурвальный имеет информацию о действительном курсе судна, так что он может применить корректирующее управление, чтобы сохранить нужный курс.



Теперь можно дать формальное определение систем с замкнутым контуром: система с замкнутым контуром есть система, в которой истинное состояние управляемой переменной (называемое «выход») непрерывно сравнивается с желаемым состоянием (называемым «вход»), и сигнал, пропорциональный разнице между этими двумя состояниями, воздействует на управляющий элемент с целью уменьшить ошибку. В этом определении ничего не говорится об энергии, требуемой для изменения выхода, или об энергии, имеющейся на входе. Как правило, на вход системы управления подается небольшая энергия, а энергия для выхода черпается из внешнего источника. Таким образом, особенностью большинства систем автоматического управления является значительное усиление мощности.



Принцип действия и проектирование. Автоматические системы управления могут быть разделены на две основные группы: стабилизирующие и следящие. В следящих системах (сервомеханизмах) входной сигнал меняется произвольно и зачастую непрерывно, тогда как в стабилизирующих ему задается фиксированное значение, а цель управления – сохранить выход постоянным, несмотря на флуктуации нагрузки. Термостат, у которого выходом является фиксированная температура, и стабилизатор напряжения, выходом которого служит нужное напряжение в сети, являются примерами стабилизирующих систем. В качестве примеров сервомеханизмов можно назвать радиолокационные и артиллерийские системы наведения и автопилоты, управляющие положением и направлением движения летательных аппаратов.



Автоматическая система управления не может функционировать без некоторой ошибки, потому что именно эта ошибка является источником управляющего сигнала. Задача проектировщика системы управления – сделать эту ошибку как можно меньше и тем самым увеличить чувствительность системы. Эта задача связана с определенными ограничениями, что становится ясно из следующего примера. Система управления с обратной связью, показанная на рис. 4, нужна для наведения тяжелого орудия с высокой точностью; она состоит из детектора ошибки, усилителя и серводвигателя. Ключевым элементом системы является прибор, который обнаруживает рассогласование угловых направлений цели и орудия, вырабатывая пропорциональный ему сигнал. Этот «сигнал ошибки», обычно очень малый, усиливается и прилагается в виде напряжения к одной из обмоток возбуждения электродвигателя, который развивает вращающий момент, пропорциональный указанному напряжению. Этот вращающий момент перемещает ствол орудия в направлении, приводящем к уменьшению ошибки.





УПРАВЛЕНИЕ ПО РАССОГЛАСОВАНИЮ (ошибке) на примере автоматического прицела артиллерийского орудия.



Если направление на цель изменяется, то орудие следует за ним. Однако по инерции орудие будет проскакивать нужное положение, приводя к появлению ошибки с противоположным знаком. Это, в свою очередь, заставит серводвигатель повернуть орудие в обратном направлении. Следовательно, орудийный ствол может рыскать туда-сюда, проскакивая правильное положение. Такой режим работы системы управления называется «автоколебательным» и является принципиальным ограничением управления с обратной связью. (Например, при запаздывании сигнала обратной связи на 180° происходило бы усиление колебаний.) Поэтому главная проблема, которая встает перед проектировщиком систем управления, заключается в предотвращении неконтролируемых колебаний при одновременном сохранении высокой чувствительности системы к управляющему сигналу.



Первым очевидным решением является минимизация запаздывания сигнала обратной связи путем использования приборов с малым временем реакции. Это может улучшить устойчивость системы, но обычно не решает проблемы полностью. Кроме того, в большинстве практических ситуаций проектировщик вынужден использовать существующие элементы системы, что диктуется соображениями веса и стоимости.



Вторая и наиболее распространенная процедура – применение в контуре корректирующих звеньев (рис. 5), нейтрализующих эффект западывания. При отсутствии таких компенсаторов управляющий сигнал представляет собой усиленную ошибку и имеет тот же знак, что и ошибка. Если компенсатор вырабатывает составляющую сигнала, пропорциональную производной от ошибки по времени, то общий управляющий сигнал будет уменьшаться и станет отрицательным прежде, чем система «промахнется». Это воспрепятствует вхождению системы в режим автоколебаний. Такой способ компенсирующего управления называется «фазовым упреждением» или «управлением с дифференцирующей цепочкой».





В рассмотренных выше случаях предполагается, что управляемый процесс или объект неизменны, а система управления и компенсирующие элементы подгоняются под процесс. С ростом потребности в управлении во многих отраслях промышленности и техники нет ничего необычного в том, что сами установки проектируются так, чтобы получить максимум преимуществ от использования последних достижений теории управления. В таких случаях сама установка становится частью системы управления. Действительно, по мере усложнения систем с обратной связью среди конструкторов и специалистов по управлению растет осознание того, что, хотя различные части системы, например ракеты, могут исследоваться и анализироваться независимо, сама система должна проектироваться как единое целое. Этот аспект проектирования сложных систем приобрел важное значение и получил название «системного анализа», или «системотехники».




Категория: Кибернетизация отдельных отраслей | Просмотров: 951 | Добавил: cybers | Рейтинг: 0.0/0 |
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Copyright MyCorp © 2024